Pancytopenia in Pediatric Population: An Etiological and Haematological Analysis in a Tertiary Care Hospital, TS

Fakeha Firdous¹, Zuafshan Sultana2, Anjani Devi³, Srujana R⁴, G J Vani Padmaja⁵

¹,²,⁴Assistant Professor, ³Associate Professor, ⁵Professor, Department of Pathology, Niloufer hospital, Osmania Medical College, Hyderabad.

How to cite this article: Fakeha Firdous, Zuafshan Sultana, Anjani Devi et al. Pancytopenia in Pediatric Population: An Etiological and Haematological Analysis in a Tertiary Care Hospital, TS. Indian Journal of Public Health Research and Development/Volume 15 No. 1, January-March 2024.

Abstract

Pancytopenia is a haematological condition rather than a disease, where the RBC, WBC and platelets are decreased in a patient’s blood. If one has pancytopenia it means there is an underlying cause responsible for it. Diagnostic evaluation of pancytopenia requires detailed clinical history, physical examination, haematological investigations including thorough peripheral blood smear and bone marrow examination. Pancytopenia is a serious condition, which should not be ignored. Prompt treatment is required. The etiological causes vary from simple causes to life threatening conditions. So early recognition of the causes helps in improving the prognosis of the patients.

Keywords: Pancytopenia, haematological investigations, children

Introduction

Pancytopenia is a haematological condition with a triad of findings which may result from a number of disease conditions affecting the bone marrow primarily or secondarily resulting in pancytopenia¹. Pancytopenia can be diagnosed incidentally when it is mild or it can be seen in few critically ill conditions such as in sepsis.²

Table no. 1: Etiology of Pancytopenia

<table>
<thead>
<tr>
<th>Decreased production</th>
<th>Peripheral destruction</th>
<th>Decreased production and Peripheral destruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aplastic anemia-congenital and acquired</td>
<td>Autoimmune haemolytic, pancytopenia</td>
<td>Paroxysmal nocturnal hemoglobinuria</td>
</tr>
<tr>
<td>Bone marrow infiltrating conditions</td>
<td>Splenic sequestration</td>
<td>SLE Drugs leukemia</td>
</tr>
<tr>
<td>Malignancy</td>
<td></td>
<td>Hemophagocyticly mphohistiocytosis</td>
</tr>
<tr>
<td>Primary and autoimmune myelofibrosis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Corresponding Author: Fakeha Firdous, Assistant Professor, Pathology, Niloufer Hospital, Osmania medical college, Hyderabad.

E-mail: drfakeha23@yahoo.co.in
Granulomatous disorders	Transfusion associated graft versus host disease
Metabolic disorders | Infections
Nutritional deficiencies |
Vitamin B12 |
Folic acid |
Copper |
Myelodyplastic syndrome |

Pancytopenia defined as Hb ≤ 10 g/dl, total WBC count < 4000 × 10⁹/L, platelet count < or equal to 150 × 10⁹/L.

The reticulated platelet count or immature platelet fraction though not used commonly, can also help distinguish if the pancytopenia is due to impaired production or increased consumption.

Pancytopenia etiology in children may vary from transient bone marrow suppression because of simple viral infections to infiltration of marrow by life threatening conditions like malignancy.

Bone marrow cellularity, morphology and composition in cases of pancytopenia vary according to the underlying cause.

Primary production defect is associated with hypocellular marrow.

Cytopenias resulting from defective/improper hematopoiesis, increased peripheral utilization or destruction of cells is usually associated with normocellular or hypercellular marrow.

The Pancytopenia etiology varies in patients from transient bone marrow suppression because of viral infections to infiltration of bone marrow by life threatening conditions like malignancy.

Pancytopenia may be induced iatrogenically due to certain medicines, chemotherapy or radiotherapy for malignancies.

The composition and cellularity in cases of pancytopenia vary according to the underlying cause.

Primary production defect is associated with hypocellular marrow.

Cytopenias resulting from defective hematopoiesis or increased peripheral destruction is usually associated with normal or increased cellularity of the bone marrow.

Our study has been initiated to identify simple treatable and also to find out reversible causes leading to pancytopenia.

Consent: Informed written consent from parents/guardians.

Conflict of interest: We authors have no conflict of interest.

Materials and Methods

Ours is a retrospective study which was carried out in our hospital and all records of patients admitted in Dept. of Pediatrics with an initial diagnosis of Pancytopenia during a duration of 1 year 7 months, between January 2021 and August 2022 were reviewed.

Cases who had history of previous blood transfusion were excluded.

A thorough clinical examination, findings, haematological parameters-CBC, retic count and peripheral smear, BMA/BM Biopsy were recorded.

The blood counts were performed on an automated cell counter [sysmex XN 1000] and abnormal findings confirmed by a hematopathologist.

All peripheral blood smears, bone marrow aspirates or trephine biopsy were processed as per standard techniques.

This study has been carried out to find causes which can be easily treated and also find out the reversible causes leading to pancytopenia.
Inclusion criteria:
- Children of age group- 1 to 15 years
- Pancytopenia on peripheral smear.
- Patients with consent [informed]

Exclusion criteria:
- Children below 1 year and greater than 15 years.
- Known cases of leukemias or aplastic anemia.
- On treatment-chemotherapy /radiotherapy.
- Past history of blood transfusion.
- Not given consent

Results

In our study period of 20 months age group 0 to 15 admitted for pancytopenia were evaluated.

Table 2: Patients distribution according to sex and age.

<table>
<thead>
<tr>
<th>Age</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5 years</td>
<td>5</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>6-10 years</td>
<td>11</td>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td>11-15 years</td>
<td>7</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>19</td>
<td>42</td>
</tr>
</tbody>
</table>

Out of 42 patients,23 were males and 19 were females.

Males to females ratio 1.2:1
Age range-1to 5 years -12[28.5%]
6 to 10 years-21[50%]
11-15 years-9[21.4%]

Table 3: Etiology table

<table>
<thead>
<tr>
<th>S. no.</th>
<th>Diagnosis</th>
<th>Number [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Megaloblastic anemia</td>
<td>28.57%</td>
</tr>
<tr>
<td>2</td>
<td>Acute leukemia [ALL]</td>
<td>26.19%</td>
</tr>
<tr>
<td>3</td>
<td>Aplastic anemia</td>
<td>2.38%</td>
</tr>
<tr>
<td>4</td>
<td>Erythroid hyperplasia</td>
<td>4.76%</td>
</tr>
<tr>
<td>5</td>
<td>MDS</td>
<td>2.38%</td>
</tr>
<tr>
<td>6</td>
<td>Secondary deposits</td>
<td>2.38%</td>
</tr>
<tr>
<td>7</td>
<td>HLH</td>
<td>2.38%</td>
</tr>
<tr>
<td>8</td>
<td>Hypoplastic marrow</td>
<td>19.04%</td>
</tr>
</tbody>
</table>

Megaloblastic anemia was the commonest cause of pancytopenia making upto 28.5% of all cases, followed by haematological malignancies accounting for 26.19% of all cases.

Hypoplastic marrow was another important cause accounting for 19.04% of pancytopenia cases.

The other causes included:
- Myeloid hyperplasia-11.9%
- Erythroid hyperplasia 4.76%
- Aplastic anemia-2.38%
- MDS -2.38%
- Secondary deposits-2.38%
- HLH-2.38%

There was adry tap in 2 cases[4.76%] for which bone marrow biopsy was done,one turned out to be ALL and another one megaloblastic anemia.

Fig 1: Megaloblastic anemia bone marrow.

Fig 2: Myeloid hyperplasia bone marrow.
Discussion

On observing the results of our study, pancytopenia can be a presentation for a wide variety of illness in pediatric population.

A comparison to similar studies of pancytopenia in adults from india has been done and our study is comparable to most of them.

Megaloblastic anemia was the commonest cause of pancytopenia[28.5%]

Similar to tilak and jain et al

Various studies reported megaloblastic anemia as an important cause of pancytopenia like ours.

Indian studies-bhatnagar et al, khunger etal

And other African studies Savage et al

Bone marrow aspiration was an extremely helpful investigation to come to an definitive diagnosis in majority of the cases [95.2%] and was inconclusive[dry tap] in 2 cases[4.76%]

Bone marrow biopsy was done in these 2 cases and diagnosed as ALL and megaloblastic anemia.

Male preponderance noted in our study similar to makajuetal, jha etal

Megaloblastic anemia causing pancytopenia accounting for 11.9% in our study.

Various causes include infectious etiology, reactive marrow, stress and drugs.

Hypoplastic marrow causing pancytopenia accounting for 19.04% in our study. Various causes include post viral suppression, infections, medications, toxins, herbal medicines, congenital bone marrow failure syndromes.

MDS causing pancytopenia accounting for 2.38% in our study diagnosed as fanconis anemia.

Secondary deposits of small round cell tumor in a27 day old female was another cause leading to pancytopenia in our study.

HLH causing pancytopenia was seen in a one year male post dengue infection.

Acute leukemia causing pancytopenia accounting for 26.19% in our study.

Conclusion

Patients of Pancytopenia may present in emergency room due to thrombocytopenia as severe bleeding. These sick appearing pediatric patients can have a simple, benign and treatable underlying cause. Due to easy availability of automated hematology cell counters, megaloblastic anemia which is an important cause of pancytopenia could be easily picked up. Though Pancytopenia is an important and frequent cause which can lead to morbidity and mortality in pediatric patients, early recognition of the cause may certainly have an impact on their outcome.

Ethical clearance: taken from college ethical committee.

Source of funding: Self.
References

4. Tilakv, jainR. pancytopenia a clinic hematologic analysis of 77 cases. indian j pathol microbial 1999:42[4];399-404

8. Pathology outlines non neoplastic alterations in cellularity, Luca DC]

