Effect of Vagal Nerve Stimulation on Cognitive Impairment Among Subjects with Anterior Cerebral Artery Syndrome: A Pilot Study

Santhana Lakshmi. S¹, Vignesh Srinivasan², Prathap Suganthirababu³, Priyadharshini Kumar⁴, Dhanusia S⁵, Kumaresh A⁶, Surya Vishnuram⁷

¹Post Graduate, ²Assistant Professor, ³, ⁶Professor, ⁴, ⁵, ⁷Tutor, Saveetha College of Physiotherapy, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.

How to cite this article: Santhana Lakshmi. S, Vignesh Srinivasan, Prathap Suganthirababu et. al. Effect of Vagal Nerve Stimulation on Cognitive Impairment Among Subjects with Anterior Cerebral Artery Syndrome: A Pilot Study. Indian Journal of Physiotherapy and Occupational Therapy / Volume 18, Year 2024.

Abstract

Background: Cognitive dysfunction, including impairments in attention, memory, executive function, and processing speed. This study was developed to determine the effectiveness of transcutaneous auricular vagal nerve stimulation on cognitive impairment among subjects with anterior cerebral artery syndrome.

Purpose: The purpose of the study is to compare and evaluate the effectiveness of two non-pharmacological methods of treatment for cognitive impairment patients with ACA syndrome.

Material and Methods: The project was conducted as a pilot study in a private hospital in Chennai. The experimental group (group A) received transcutaneous auricular vagal nerve stimulation for 20 minutes and conventional strengthening exercises for the affected limb for 10 minutes. Group B got conventional cognitive training (20 minutes) and strengthening exercises (10 minutes). Following the four-week treatment, a post-test analysis was performed using the Montreal cognitive assessment scale.

Results: The post-test analysis obtained a mean value of about 27.25 and SD 1.5 for group A, whereas group B revealed 22.75 ± 1.25, mean ± SD, and a significant P value of 0.004.

Conclusion: Non-invasive transcutaneous auricular vagal nerve stimulation has been proven to be an effective approach for preventing vascular dementia.

Keywords: Cognition therapy, vascular dementia, electrical stimulation, nerve stimulation

Introduction

Cognitive impairment is seen as a step that occurs between healthy aging and brain cell damage¹.². Cognition is a mental action or a set of phases including learning, comprehension, and the senses. It also involves high cognitive abilities, such as focus, memory storage, decision-making, planning, judgment, and reasoning³.

According to data, there is a 1.8 percent incidence of cognitive impairment in senior adults around the age of 60, a 5.1 percent incidence in those around the age of 70, a 15.1 percent risk in those in their 80s, and a 35.7 percent risk in those in their 90s⁴–⁷. Cognitive impairment is caused by various factors, such as any disease process, hereditary factors, mutations in the genes due to poor lifestyles, and nutrition deficits⁸.

Corresponding Author: Vignesh Srinivasan, Assistant professor, Saveetha College of Physiotherapy, Saveetha Institute of Technical and Medical Sciences, Chennai, Tamil Nadu, India.

E-mail: vigneshphysio1989@gmail.com
If the frontal lobe is damaged, the patient will have difficulty planning and understanding. Injury to the parietal lobe manifests as a decrease in dressing ability and visual-spatial function. When the temporal lobe is involved, language and memory issues arise. To be more precise, cognitive impairments are seen following an acute ischemic stroke, which is due to atherosclerosis of the large artery. The cognitive decline resulting in dementia following brain infarcts is collectively called multi-infarct dementia. More evidence points to the probability that Alzheimer’s disease may emerge as a result of vascular cognitive impairment. Post-stroke cognitive impairment is linked to demographic and vascular origin variables such as age, education, and job.

Typical ACA infarct symptoms include changed mental status, verbal fluency issues, incontinence, reduced responsiveness, and a difficulty or desire to communicate. Focus, executive function, memory storage, and visuomotor speed limitations are signs of the gradual cognitive decline caused by cerebrovascular disease. Damage to the brain parenchyma, including hyperintensities of white matter in radiological data and the improper functioning of perforating arterioles, venules, and capillaries, are features of vascular cognitive impairment. It ultimately became clear that a systematic strategy was needed for investigating people with cognitive impairment. The examination, radiological tests, and laboratory testing all contribute to a thorough assessment of cognitive impairment. A diagnosis is made to evaluate the severity of the impairment and the source of the cognitive deficit.

The Montreal Cognitive Assessment (MoCA) is a screening exam used to evaluate mild cognitive impairment in the elderly. When compared to another commonly used cognitive evaluation test, two possible benefits of MoCA are the evaluation of execution abilities and the presence of more complex visual building task.

The intervention for cognitive impairment is expected to focus on the relationship between neuronal activity/neurovascular coupling and blood vessels, the organization of molecular clearance and leukocyte trafficking, the related macroscopic waste clearance system, and the function of the blood-brain barrier. Non-pharmacological cognitive impairment management aims to address a broad variety of disciplines that improve cognition, behavior, mood, and psychological symptoms. According to authors, treatments are classified into four types: holistic approaches, cognitive methods, alternative approaches, and short psychotherapy.

Non-pharmacological intervention is found to be more effective than the pharmacological treatment method in treating cognitive decline. Transcutaneous auricular vagal nerve stimulation (taVNS) has been proven to be effective in improving cognition in patients with cognitive impairment. The Food and Drug Association authorized vagus nerve stimulation at the cervical level as a therapy for refractory epilepsy in 1997, and it was approved as a longer-term treatment for refractory depression in 2005.

Despite its effectiveness, the surgical strategy of vagal nerve stimulation has significant technical challenges and, as a result, a limited spectrum of usage. As a result, non-invasive vagus nerve stimulation was developed. The two non-invasive treatments employed were stimulating the ear and applying superficially to the cervical nerve. The aim of this study is to determine the effectiveness of transcutaneous auricular vagal nerve stimulation on cognitive impairment in anterior cerebral artery syndrome.

Aim

To analyze the effect of transcutaneous auricular vagal nerve stimulation on cognitive impairment among subjects with anterior cerebral artery syndrome.

Material and Methods

The research project was conducted as a pilot study in a private hospital in Chennai to investigate the efficacy of transcutaneous auricular vagal nerve stimulation in improving cognitive abilities in patients with anterior cerebral artery syndrome. A private college’s Scientific Study Board approved a human population study in line with all applicable laws and regulations (01/027/2022/ISRB/PGSR/SCPT). Following a thorough description of the procedure, individuals were selected from the private hospital with their signed consent. There was
blind of both the participant and the evaluated participant involved in this study. The study duration is from January 2023, and treatment sessions began in February 2023 for four weeks.

Selection criteria: Eight participants were selected, representing both genders, based on the following eligibility criteria: Inclusion criteria:

- Participants with ACA syndrome,
- Participants with a pre-test Montreal cognitive assessment scale score of less than 25, were eligible to participate.

Exclusion criteria:

- Participants who had a history of various neurological diseases,
- recent injuries, mental instability,
- lack of interest in participating in the study were excluded.

Outcome measure: A fast screening assessment tool, the Montreal Cognitive Screening, was developed to identify MCI in elderly people. MoCA is a 30-point test that can be finished in under 10 minutes and evaluates a number of skills, including execution, short-term recall of memory, visuospatial abilities, focus, concentration, memory of work, language, and time and space orientation. MoCA has a Cronbach’s Alpha of 0.715, which indicates strong internal consistency. At a cutoff of 26, the MoCA area under the curve has a sensitivity of 97.8%, a specificity of 67.2%, and a 95% confidence interval of 0.672–0.849 [22].

Procedure

The participants were separated into two groups, A and B, using the closed envelope method. Both groups received 30-minute therapy sessions three days a week for four weeks. The experimental group (group A) received transcutaneous auricular vagal nerve stimulation for approximately 20 minutes (30 seconds ON and 5 minutes OFF), with clip electrodes placed on the Cymba concha of the left ear at a frequency of 25 Hz, amplitude: 1 mA, pulse width: 330 s, and conventional strengthening exercises for the affected hemiparetic limb for 10 minutes. Group B got conventional cognitive training (20 minutes) and strengthening exercises (10 minutes). Following the four-week treatment period, a post-test analysis was performed using the Montreal cognitive assessment scale.

Data analysis

A statistical analysis was done with the Intention of treating the cognitive impairment after the stroke (ACA syndrome). Pre- and post-test values for MOCA were noted. A paired t-test was used for within-group analysis, and a Mann-Whitney U test was used for between-group analysis.

Table 1: Baseline characteristics of population included.

<table>
<thead>
<tr>
<th>CHARACTERISTICS</th>
<th>GROUP A</th>
<th>GROUP B</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE (mean ± SD)</td>
<td>43.25 ± 2.38</td>
<td>44.5 ± 2.29</td>
</tr>
<tr>
<td>DURATION (mean ± SD)</td>
<td>7.75 ± 1.47</td>
<td>7.82 ± 1.11</td>
</tr>
<tr>
<td>MoCA</td>
<td>20.25 ± 2.38</td>
<td>20.25 ± 1.47</td>
</tr>
</tbody>
</table>

Table 2: Pre and Post-test comparison of Group A (taVNS)

<table>
<thead>
<tr>
<th>GROUP</th>
<th>MEAN ± SD</th>
<th>t value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-test</td>
<td>20.25 ± 2.75</td>
<td>-9.89</td>
<td>0.002</td>
</tr>
<tr>
<td>Post-test</td>
<td>27.25 ± 1.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Pre and post-test comparison of Group B (conventional cognitive training).

<table>
<thead>
<tr>
<th>GROUP</th>
<th>MEAN ± SD</th>
<th>t value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-test</td>
<td>27.25 ± 1.5</td>
<td>4.7</td>
<td>0.018</td>
</tr>
<tr>
<td>Post-test</td>
<td>22.75 ± 1.25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4: post-test comparison of both Group A and B (taVNS and Conventional cognitive training).

<table>
<thead>
<tr>
<th>PARAMETRICS</th>
<th>MEAN ± SD</th>
<th>t value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td>27.25 ± 1.5</td>
<td>4.59</td>
<td>0.004</td>
</tr>
<tr>
<td>Group B</td>
<td>22.75 ± 1.25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results

The collection of data began in January 2023, and treatment sessions began in February 2023 for four weeks. Following the treatment phase, the post-test analysis was carried out using the Montreal Cognitive Assessment.

The statistical analysis of the study revealed a significant p value of less than 0.004 (Table 4) for
those who underwent transcutaneous auricular vagal nerve stimulation in addition to conventional strengthening training. Both groups had the same baseline characteristics in the pre-test (Table 1).

MoCA testing was done on both Group A and B before the therapy started. Group A underwent conventional strengthening training for 10 minutes each week for four weeks while also receiving transcutaneous auricular vagal nerve stimulation for 20 minutes. The patient’s post-test analysis then made use of the same outcome. The data collected before and after the treatment was recorded, and the paired t-test was used to look into the difference. The statistical analysis shows that $P = 0.002$ is significant (Table 2).

Group B received standard cognitive training and muscle-strengthening exercises. The paired t-test was used to examine the differences between the data acquired before and after the test. With a p value of 0.018, it also showed statistical significance (Table 3).

On comparing, the post-test values obtained in both group A and B was analyzed using Mann-Whitney U test and it revealed a statistically significant p value of 0.004 (Table 4).

Discussion

The study aimed to find out the effectiveness of transcutaneous auricular vagal nerve stimulation on cognitive impairment in ACA syndrome. There are various complications that occur following a stroke. Post-stroke cognitive impairment is common in stroke survivors and has a negative impact on their health. Stroke-related cognitive impairment is usually accompanied by other disorders, such as depression23. The most uncommonly addressed area of cognitive decline that requires substantial attention in order to avoid dementia is cognitive decline of vascular origin. Clancy U. et al. conducted research on cognitive damage caused by small vessel disease, the neuropsychiatric symptoms of small vessel disease as an indication of cognitive impairment. The research discovered a progression in white matter hyperdensities linked to neuropsychiatric symptoms24.

Looking into the available therapeutic methods or preventive measures for vascular dementia, we studied certain studies that discussed the management of cognitive impairment. The pharmaceutical intervention included the administration of donepezil, galantamine, and rivastigmine, as well as cholinesterase inhibitors. An author conducted a double-blind trial in 2003 with a focus on vascular cognitive impairment and discovered the significant effect of donepezil on cognition. However, there was still a discrepancy in global cognitive functioning25,26. In 2010, Similarly others attempted to develop preventive strategies for post-stroke cognitive impairment. The author observed that there is no obvious treatment option for preventing post-stroke cognitive decline. The author suggests that further study is needed to develop a clear strategy for preventing cognitive loss after a stroke27.

Because there was not much significance to be found in pharmaceutical therapy, a special emphasis was placed on the non-pharmacological approach to cognitive impairment. Berg-Weger M. et al., 2017 revealed evidence-based non-pharmacological therapy to be a cost-effective therapeutic strategy with no adverse effects. Stimulation therapy has been shown to be more effective in terms of improving cognition and quality of life18.

In addition to this, there is another emerging effective non-invasive therapeutic method for improving cognitive function: transcutaneous auricular vagal nerve stimulation, a modulating method that uses electrical stimulation to stimulate the branch of the afferent vagal nerve. taVNS differs from transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS). Boon P. et al. investigated the effect of vagal nerve stimulation on cognition in 2006. The author concluded that vagal nerve stimulation is a potential therapy in the management of cognitive decline after analyzing the literature on the effect of vagal nerve stimulation on cognition28. On the other hand, Ruhnau P. et al., in 2021, studied the effect of transcranial auricular vagus nerve stimulation in combination with ear-EEG. The author found that this closed-loop combination of taVNS and ear-EEG has been demonstrated to be a supportive device for the healthy population as well as a potential tool for the treatment of neuropsychiatric illnesses. The author also recommended that future studies concentrate on maximizing the long-term efficacy of taVNS29.
As a result, we decided to administer the effective therapeutic technique taVNS to patients who were diagnosed with ACA syndrome—cognitive decline. We had a desire to conduct an experimental investigation to determine the efficacy of non-invasive vagal nerve stimulation, which would reduce the danger of adverse effects. Prior to that, we decided to take a chance and perform this pilot research to see if transcutaneous auricular vagal nerve stimulation improved cognitive ability.

The Montreal Cognitive Assessment Scale (MoCA), the most reliable and precise tool for detecting mild cognitive impairment, was employed as the outcome measure in this study. MoCA was used for both the pre- and post-test analyses. In 2021, research compared the MoCA with the Oxford Cognitive Screen, finding that the Oxford Cognitive Screen was not any better at detecting cognitive impairment in post-cognitive impairment than the MoCA30.

Since this study was self-funded, authors haven’t performed any quantitative analysis, like biological markers. The study is unique since it addressed the population’s post-stroke cognitive loss and vascular dementia by providing a special non-invasive, efficient, and safer treatment approach. This research helps in the prevention of dementia in people with cognitive impairment.

Conclusion

According to the results of the current study, non-invasive vagal nerve stimulation performed trans-auricularly resulted in a greater improvement in cognitive function than conventional cognitive training, with a significant value of p = 0.004. Participants who underwent conventional cognitive training also showed improvement. But when comparing the two groups, those in group A who received transcutaneous auricular vagal nerve stimulation showed a more significant improvement in treating the cognitive symptoms of ACA syndrome.

Ethical clearance: The ISRB committee of a private hospital and institution in Chennai has provided its clearance for the conduct of human research that complies with all applicable national laws, institutional regulations. (Application Number 01/027/2022/ISRB/PGSR/SCPT).

Funding: none

Acknowledgements: The author would like to express their sincere thanks to the study participants, the authors whose works are referenced and cited in our manuscript, and the creators of the MoCA.

Conflict of interest: The authors state that there is no conflict of interest.

References

